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Exercise 1. Pendulum large oscillations

Given a simple pendulum of mass m and length [. Assume that, at the initial time, the pendulum
has zero velocity and it forms an angle ¢y with respect to the vertical axis. Do not assume, for
the moment, small oscillations.

a) Determine the period of oscillation as a function of its amplitude.

It is not required to explicitly perform the integral: you should be able to express it as a
complete elliptic integral of the first kind
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Hint: use the fact that (1 — cos¢)/2 = sin(¢/2) first and then the substitution sin¢ =
sin% / sin %, where ¢ is the angle the pendulum forms with the vertical axis.

What is the difference between this case and the case of small oscillations seen in the third
exercise sheet?

b) Knowing that the integral defined above has the following Taylor expansion
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express the period of the pendulum as a power expansion up to the fourth power of the
amplitude. Do you recognise any of the terms appearing?

Exercise 2. Rotating bead on a plane

A bead of mass m is constraint to move on a horizontal disc placed at height H from the ground.
Now we puncture a small hole at the center of the disc, we attach a massless wire of length L
to the bead and we pass it through the hole; when the bead is in the rest position at the center
of the disc, then, the wire completely hangs loose vertically. In order to describe the motion of
bead use cylindrical coordinates (p, ¢). We look at the following two cases:

(a) We attach a weight of mass M and height H — L to the other end of the wire, in a way
that the weight touches the ground and the wire is completely straight above it. Now we
pull the bead horizontally, such that the weight reaches a height of z from the ground, and
we give a spin to the bead, placing it in an (instantaneous) circular motion with angular
velocity w (see Fig 1).

(i) Derive the Lagrangian for the bead in this configuration. Neglect the friction in your
derivation.

(ii) Write down the Euler-Lagrange equations, and using one of the two show that the
angular momentum [ of the bead is a conserved quantity.

(b) Now we remove the weight attached to the wire and we replace it with a spring fixed on
the ground, which has a spring constant k£ and rest position at zo = H — L. Similarly as
before, we pull the bead horizontally until the spring is stretched to a height z, and then
we let it spin on the disc with angular velocity w (see Fig 2).



(i) Derive the Lagrangian for the bead in this other configuration. Neglect the friction.

(ii) Write down the Euler-Lagrange equations and show that the angular momentum [ of
the bead is conserved.

(¢) In both cases cast the Euler-Lagrange equations into the following form:

mp = T (Uetr) (3)

where Uegr (p) = U(p) + %ml—i)g Show that for both cases there is an orbit which is restricted

to some region [Pmin, Pmax)-
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Figure 1: Graphical depiction of the system for exercise 2a).
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Figure 2: Graphical depiction of the system for exercise 2b).
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Exercise 3. The variation of the energy of a holonomic system

a) Write the kinetic energy
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of a holonomic system of N particles as a function of n independent generalized coordinates

¢ (i=1,...,n) and show that for stationary constraints (i.e., constraints without explicit
dependence on time)
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Jr(F,7,...,7) =0, k=1,...,d where d is the number of constraints, (5)

T is a quadratic, homogeneous polynomial of the generalized velocities ¢;.

Hint. Write T = Ty 4+ Ty + Ty where Ty is quadratic in ¢;, T1 s linear in ¢; and Ty is independent
of ¢;-



b)

Given that the total energy of a holonomic system is £ =T + U, where T is the kinetic
energy and U is the potential energy, use the Euler-Lagrange equations
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to show that
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where Q; is a non-potential generalized force.

Hint. Make use of the Euler formula for a homogeneous polynomial f = f(x1,...,2x) of degree

Z o (8)

Consider a few cases of the result (7).

(i) system with stationary constraint
(ii) the potential energy does not depend explicitly on time and (i)

(iii) a conservative system and (ii)

Non-potential forces Q; are called gyroscopic if
> Qigi=0. 9)
i
Consider a generalized force which depends linearly on the generalized velocities

Qi = Zaijdj- (10)
J

Under what conditions is Q; gyroscopic? Is the Coriolis force acting on a particle of mass
m a gyroscopic force?

Q=-2mo x0T (11)



